
Techniques and Applications for Guest-Language Safepoints

Benoit Daloze
Johannes Kepler University Linz, Austria

benoit.daloze@jku.at

Chris Seaton Daniele Bonetta
Oracle Labs

first.last@oracle.com

Hanspeter Mössenböck
Johannes Kepler University Linz, Austria

moessenboeck@ssw.jku.at

Abstract
Safepoints are a virtual machine mechanism that allows one thread
to suspend other threads in a known state so that runtime actions
can be performed without interruption and with data structures in a
consistent state. Many virtual machines use safepoints as a mech-
anism to provide services such as stop-the-world garbage collec-
tion, debugging, and modification to running code such as installing
or replacing classes. Languages implemented on these virtual ma-
chines may have access to these services, but not directly to the
safepoint mechanism itself. We show that safepoints have many
useful applications for the implementation of guest languages run-
ning on a virtual machine. We describe an API for using safepoints
in languages that were implemented under the Truffle language im-
plementation framework on the Java Virtual Machine and show
several applications of the API to implement useful guest-language
functionality. We present an efficient implementation of this API,
when running in combination with the Graal dynamic compiler. We
also demonstrate that our safepoints cause zero overhead with re-
spect to peak performance and statistically insignificant overhead
with respect to compilation time. We compare this to other tech-
niques that could be used to implement the same functionality and
demonstrate the large overhead that they incur.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments

Keywords Virtual Machine, Safepoints, Java, Truffle, Graal,
Ruby, JavaScript

1. Introduction
A virtual machine (VM) is a collection of services that support a
running program at a higher level of abstraction than a physical ar-
chitecture provides. This may include services such as automatic
memory management through garbage collection, dynamic opti-
mization through just-in-time compilation, debugging and instru-
mentation, dynamic code loading and reloading.

To provide many of these services the VM needs to be able to
pause the running program to inspect and modify its state. Even
in a single-threaded environment this can require coordination be-
tween the running application and the VM, as the trigger for the
VM’s action may be an external source such as attaching a remote

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICOOOLPS ’15, July 6, 2015, Prague, Czech Republic.
Copyright c� 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

debugger. However the problem becomes significantly more com-
plex when there are multiple running application threads that all
need to be coordinated with the VM. One example of a service that
needs to coordinate application threads with the VM is the garbage
collector. With the exception of some highly specialized collectors,
a garbage collector will at some point need to pause all application
threads to update the heap when objects are moved and collected.
Conventional architectures and system libraries for threading such
as pthreads generally do not provide a native mechanism to pause
a running thread, so the VM must provide this itself by adding code
to the application thread. Any addition must have very low over-
head — re-using existing synchronization primitives such as locks
would mean that application threads would continually be using
these locks even though they are infrequently required. The imple-
mentation must also have low latency — in that when threads are
requested to pause for garbage collection there should not be a long
delay until the collection can go ahead. Additionally, as well as just
being paused those threads must be paused in some kind of consis-
tent state where modifications to the heap will not conflict with the
work of the application thread.

1.1 Safepoints and Terminology
The conventional solution to the problem of VM-level synchroniza-
tion and coordination is a technique called safepoints. A safepoint

is a point in an application thread where it is safe to pause its execu-
tion. The VM and its services have special knowledge of safepoints,
and can use them to perform several VM-level operations.

The word safepoint refers to several components of the system,
therefore we disambiguate the meaning by qualifying the term.
We define VM safepoint as the lapse of time during which host
threads are paused by the VM in their respective safepoints. The
alternative — our contribution — is a guest-language safepoint or
simply guest safepoint, the lapse of time during which guest threads
are paused by the guest-language implementation. For clarity, we
will refer to the location within an instruction stream where any of
these safepoints can be entered as a safepoint check rather than just
safepoint.

1.2 Guest-Language Safepoints
What we contribute is not a mere transposition of VM safepoints
to guest languages. This already exists to some extent with Truffle
Assumption [19] or JSR 292 SwitchPoint [14], which we detail
later as possible underlying mechanisms.

What we propose is an API which allows to interrupt any guest
thread to run arbitrary code, with low latency and zero overhead
on peak performance.

Applications for this API are numerous and very powerful: ef-
ficient intra-thread communication, signal handling in an exist-
ing thread, enumeration of all live objects, call stack examination,
always-available debugging, and even deterministic parallel execu-
tion.

1.3 Implementation Context
Our implementation has been developed as part of the open source
JRuby+Truffle project [19]. JRuby [12] is an existing effort to im-
plement the Ruby language on top of the JVM using conventional
techniques such as bytecode generation and the invokedynamic in-
struction. Truffle is a framework for writing self-optimizing AST
interpreters on top of the JVM [23], and can be seen as an alterna-
tive to the conventional approach used in JRuby. JRuby+Truffle
brings the Truffle approach as an optional backend to JRuby.
The Truffle framework is normally used in combination with the
GraalVM [22] — a modification of OpenJDK that includes the
Graal dynamic compiler. As Graal is written in Java, Truffle can
use it like a library, creating, manipulating and compiling the com-
piler’s intermediate representation. Truffle’s Assumption is used to
implement guest-language safepoints, meaning all guest compiled
code is invalidated when a guest safepoint is triggered and needs
recompilation later. For our current use-cases, this is not critical as
guest safepoints are triggered only on exceptional and rare events.

1.4 Contributions
The contributions of this paper are:
• A simple but powerful API for guest safepoints that can be

conveniently used in languages implemented on top of a virtual
machine.

• Example applications of this API to implement existing and
new features in the Ruby language.

• An efficient implementation of this API that has provably zero
overhead in peak performance and statistically insignificant
overhead in compilation time.

2. An API for Guest-Language Safepoints

This section describes our novel API for using safepoints in a
guest-language implementation. What we propose is a mechanism
that pauses guest-language threads at guest safepoint checks and
allows us to interrupt any thread to run any safepoint action, that is
arbitrary code written in the host language. This is an extension
to the functionality of VM safepoints as they are restricted to
run predefined code in only a subset of the threads. An API for
such a mechanism has many application opportunities. Our API is
composed of two main parts, illustrated in Figure 1.

The first part of the API is used to respond to safepoint requests
from other threads. To this end, application threads make a call to
the poll() method at every location that is a guest safepoint check.
These calls are inserted in the guest-language implementation code
and not in the application code. For example, a guest-language
method will call poll() once at the start of each method, and

// Guest-language threads call
poll();

pauseThreadsAndExecute(threads, -> {
// Action to run in every thread.
// All threads wait for others
// to complete their actions.

});

pauseThreadsAndExecuteLater(threads, -> {
// Deferred action to run in every
// thread, after the thread has
// exited the guest safepoint.

});

Figure 1. API for guest-language safepoints.

latency(

guest(
safepoint(
ac0on(

deferred(
ac0ons(

0me(

safepoint(
requested(

running&thread&

deop.mizing&thread&

wai.ng&thread&

thread&within&guest&safepoint&

host(
VM(

safepoint(

threads(

thread&within&deferred&ac.on&

Figure 2. Phases of a guest-language safepoint

again within every loop1. As will be described in Section 4 and
later evaluated, the number of calls to poll() does not affect
peak performance. Only threads controlled by the guest-language
implementation should use poll(). The polling threads should
not perform blocking operations that cannot be interrupted through
normal JVM thread interruption. We will discuss these limitations
in Section 7.

The second part of our API is for triggering a guest safepoint
and for asking the threads to run the given safepoint action. We
call the thread requesting the guest-language safepoint the initiator
thread since it initiates the whole process (activating the safepoint
guard, interrupting other threads, sending them the action, etc).

The list of threads affected by a safepoint action is a subset of
the threads running guest-language code. However, for all use cases
we present, we either want to interrupt all guest-language threads
or just a single one. Therefore, usages of our API will use either a
single thread or allThreads to mean all guest-language threads.

Different safepoint actions require different forms of synchro-
nization between the affected threads. In any case the initiator
thread has to wait for all affected threads to reach the guest safe-
point checks. We distinguish whether the safepoint action is run in-
side the guest safepoint or immediately after the application thread
leaves the guest safepoint and resumes normal execution — in
which case we call it a deferred action. When we want to run the
action within the safepoint we call pauseThreadsAndExecute().
This method accepts a list of threads to be paused and a lambda
expression to execute in the guest safepoint by each thread. All af-
fected threads wait that all actions are run to completion. Running
the action in the guest safepoint ensures no guest-language thread
runs anything else than the safepoint action, which can be used to
prevent uncontrolled modifications of the heap, similarly to a VM
safepoint.

When the initiator does not need these properties, it calls
pauseThreadsAndExecuteLater() for a deferred action. The
action runs after the guest safepoint has finished and the applica-
tion has left the safepoint, resuming normal execution concurrently
with other threads. This is useful for actions that run guest-language
code such as callbacks which may themselves use safepoints or run
for a longer time. We still have the guarantee that the action will be
executed by the other threads before they return from poll() and
before they continue executing their original code.

1 As a concrete example, the JRuby+Truffle interpreter performs a call to
poll() only at seven locations across the whole JRuby+Truffle code base
which implements the majority of a large, complex existing language. These
locations were the common nodes for method preludes and loop constructs.

It is worth noting that pauseThreadsAndExecute() can be
expressed in terms of pauseThreadsAndExecuteLater() by
adding a barrier synchronization at the end of the provided ac-
tion. Having a separate method reveals better the intent and the
desired properties.

These higher level concepts are illustrated in Figure 2. The ac-
tions run in each thread are shown with other threads waiting until
all are ready to run their action, and until all are finished. Deferred
actions are shown running after the main action, concurrently with
other threads running normal code.

3. Applications

In this section we describe how we have applied our API in
JRuby+Truffle. We also discuss another application currently under
development in our Truffle-based JavaScript engine [15].

3.1 Intra-Thread Communication
Some languages allow a thread to cause some action to run on
another thread. This is quite a good fit for our API as we can run
any action in any thread. For example, a recurrent requirement is
to be able to stop a thread because, e.g., it is blocked or the task
is no longer needed. In Ruby this functionality is provided by the
Thread.kill method. To implement this in JRuby+Truffle, the
first thread initiates the safepoint:

pauseThreadsAndExecuteLater(targetThread, -> {
throw new KillException();

});

The action (the lambda in the call) will be run on the target
thread in the next call to poll() where it will throw the exception.

We use an exception as the target thread should not just im-
mediately die — the language semantics are that any cleanup ac-
tions such as ensure (Ruby’s equivalent of Java’s finally) blocks
should be run first. This means that even if there was a primitive to
just kill the underlying thread it would still not be appropriate.

Any ensure clauses will be run to free resources, until the
exception terminates the thread execution. We use the deferred
version of the API call because throwing an exception may cause
arbitrary Ruby code to be executed, which is not designed to run
inside a guest safepoint. In Ruby, it is also possible to raise an
arbitrary exception in another thread. This is just a variant of the
previous example, in which the exception is provided by the user.

3.2 Guest-Language Signal Handlers
Signal handling on a traditional JVM typically spawns a new thread
per signal, for example when using the sun.misc.Signal pack-
age. This is rather inefficient as it needs to spawn a new thread for
every signal and incurs some latency as the thread needs to start up,
be scheduled and the threads to interrupt need to react to the notifi-
cation. Furthermore, the newly spawned thread has no generic way
to pause or interrupt other threads. With our API we implement a
mechanism for signals that is closer to how C handles them, i.e., by
running the signal handler on top of a thread call stack (in poll())
and returning to normal execution when finished. This allows an
application to respond in a more timely manner to signals and to
run the handler in a well-known thread. This is in turn very useful
in Ruby to implement interruptions such as the SIGINT signal. The
signal handler is defined by Ruby code and runs in the main thread,
performing the appropriate action to interrupt it such as stopping
the running server or raising an Interrupt exception.

3.3 Enumerating Live Objects
Heap walking, that is enumerating all live objects in a VM has
always been a challenge to implement efficiently. While its utility

for general applications might be questioned, it is often useful for
debugging, especially when searching for memory leaks. It is one
of the most powerful features a language might have and can, for
example, help in upgrading a live system by migrating its objects
to the new version. In Ruby, access to heap walking is provided by
the each object method. Implementing such a feature requires
exclusive access to the heap so that objects are not created or
destroyed while the list of live objects is created, and it also requires
access to the stack of all running threads. Our API provides the
functionality to pause all threads and by running an action on each
thread we can access all of their stacks. The existing Truffle API,
unrelated to safepoints, already provides a mechanism to access
values on the guest-language stack.

Set<Object> liveObjects;
pauseThreadsAndExecute(allThreads, -> {

synchronized (liveObjects) {
visitCallStack(liveObjects);

}
});

The safepoint action then consists of walking the stacks of all
threads as well as the thread-local memory in order to look for root
pointers, similar to what the marking phase of a GC would do. Each
thread adds the objects it can reach to a common set, which is given
to the caller once all threads have completed the action.

3.4 Examining Call Stacks
One simple way of finding out what a program is doing is to inspect
its threads’ call stacks. jstack does this for Java programs, but
its implementation requires VM support and so it is normally not
possible to implement the same functionality for a guest language.

Using our API we implemented a version of jstack for
JRuby+Truffle. We added a VM service thread that listens on a
network socket. Our equivalent of the jstack command sends a
message to this socket, and the service thread uses our safepoint
API to run an action on all threads that prints the current guest-
language stack trace.

pauseThreadsAndExecute(allThreads, -> {
printRubyBacktrace();

});

3.5 Debugging
Proper debugging support is probably amongst the most useful
tools a programming language can provide. In almost all other plat-
forms, including HotSpot, debugging comes with some overhead.
This may be significant enough that a production system cannot be
debugged.

In previous work [18] it was demonstrated that by re-using
VM safepoints a debugger can attach and remove breakpoints in
a running program with zero overhead until the breakpoints are
triggered. In that work the debugger was in-process and could only
be used by writing application code to enter the debugger where
commands could be entered. Using our guest-language safepoints
we can extend that functionality to allow a debugger to be attached
remotely. We reused the same VM service thread as before that
listens on a network socket. When a message is received the service
thread runs a safepoint action on the main thread telling it to enter
the debugger, from where breakpoints can be added and removed
and the program inspected.

pauseThreadsAndExecuteLater(mainThread, -> {
enterDebugger();

});

3.6 Deterministic parallel execution
A less conventional usage of safepoints can be found in the con-
text of deterministic parallel programming models, i.e., program-
ming models that guarantee deterministic parallel execution. One
example of such models is the RiverTrail [6] parallel API for
JavaScript, an array-based data-parallel programming model pro-
viding implicit parallelism for array-based operations (e.g., via the
Array built-in object). To enforce deterministic parallel execution,
the RiverTrail runtime has to make sure that functions are not per-
forming any “unsafe” operation during parallel execution. This is
enforced via the following model of execution:
• Functions can read data from every object that is in their scope

at the moment the parallel computation is started. Functions can
also freely write to local variables, but they are not allowed
to write to objects that are potentially in the scope of other
functions as well.

• Parallel functions that attempt to modify an object potentially
shared with other functions will cause the parallel execution to
bailout to sequential mode. In this way, deterministic execution
is enforced via sequential execution. In this case, parallel exe-
cution is aborted and a single function (usually the first function
trying to modify the shared object) is responsible for complet-
ing the rest of the computation.

This model of execution is called temporal immutability [11], and
is implemented in the Truffle JavaScript engine [15] using our safe-
point API. In particular, every time a function performs a read op-
eration that could potentially lead to a bailout (e.g., reading from a
field that has been modified by another function), the poll opera-
tion is invoked to ensure that no other thread is attempting to write
to some shared object (that is, to ensure that parallel execution is
safe). Once a thread attempts to perform an unsafe access that will
lead to a bailout (e.g., writing to a shared object), it will request a
safepoint. In the safepoint action, the thread will kill all the other
threads, and complete the computation sequentially, taking over the
work of the aborted threads, if any. A similar deterministic paral-
lel programming model called Deterministic Parallel Ruby [10]
has also been proposed in the context of Ruby. Differently from
RiverTrail, the Deterministic Parallel Ruby model does not enforce
deterministic parallel execution using a bailout protocol, but via a
“debug” mode that dynamically checks for non-deterministic exe-
cution paths. An alternative implementation of the model could use
our safepoints API to check for deterministic execution at very low
overhead.

4. Implementation

We now describe the implementation of guest-language safepoints,
first from a conceptual point of view and then gradually into more
details. Figure 2 shows how the implementation details work to-
gether.

4.1 A flag check

Conceptually, to implement the proposed API, all threads need
to regularly perform a check — for instance by reading a flag —
in poll() which tells if the thread should enter a guest-language
safepoint. A thread must be able to change the result of that check
when it calls pauseThreadsAndExecute() or its variant.

A simple but high-overhead implementation could use a global
volatile boolean variable, as shown in Figure 3. The variable needs
to be volatile as the JVM memory model allows non-volatile fields
to be read once and the value re-used unless there is a synchroniza-
tion point. In practice this may mean that a method containing an
infinite loop may only actually read the field once, and the check

within the loop could just use a cached value. A thread running the
infinite loop would never detect the guest safepoint.

For simplicity when describing the implementation, we remove
the threads parameter and instead assume there is a condition in
the action to decide if it should be executed by the current thread.

volatile boolean guestSafepoint = false;

void poll() {
if (guestSafepoint) {

// enter guest safepoint
// execute action
// wait for other threads

}
}

void pauseThreadsAndExecute(Action action) {
// notify the safepoint action
guestSafepoint = true;
// wait for threads to enter the safepoint
guestSafepoint = false;
// execute action
// wait for threads to complete the action

}

Figure 3. Simple implementation of the API using a volatile flag.

We reset the flag as soon as all affected threads have reached the
guest safepoint because the action could potentially call poll()
and we would not want to keep entering the guest safepoint if there
is no need.

One key limitation of a volatile flag is that the whole point of the
volatile modifier is that it prevents the compiler from performing
some optimizations such as caching the value instead of performing
multiple reads. When our Ruby code is compiled and optimized by
Graal we generally inline a very large number of methods, as in
Ruby all operators are method calls. This means that we are likely
to end up with a large number of volatile reads in each method
— at least one for each operator application — and the compiler
will not attempt to consolidate them, as this is exactly what the
volatile modifier is for. Therefore, we would rather optimize the
guest safepoint polls by reusing the existing VM safepoints.

4.2 Truffle and Graal
The Truffle language implementation framework provides an ab-
straction named Assumption to model these checks reusing VM
safepoints. An Assumption provides the isValid() method to
check its validity and an invalidate() method to invalidate the
assumption.

The Graal dynamic compiler has special knowledge of calls to
isValid(). First of all, it requires the receiver assumption to be
a compile-time constant (annotated with @CompilationFinal).
This allows the compiler to inspect the actual Assumption object
and know whether it is valid. In our case, the assumption is always
valid when compiled by Truffle and Graal as it is replaced with
a new and valid assumption before recompilation. The calls to
isValid() are then simply replaced by their compile-time value
(true in our case). This means that a condition such as in Figure 4
is omitted from the compiled code as the branch is known to never
be taken. Finally, the compiler registers the assumption with the
generated code.

When invalidate() is called on an assumption, the compiled
code depending on the assumption will be deoptimized (or marked
as invalid) and all threads executing that code will transfer to the
interpreter. The dependent code is known thanks to the previous
registration. The VM will then trigger a VM safepoint, pausing all
threads to deoptimize the dependent code. This is how guest safe-

// The assumption to implement the guest safepoint
@CompilationFinal Assumption assumption =

Truffle.getRuntime().createAssumption();

void poll() {
if (!assumption.isValid()) {

enterGuestSafepoint();
}

}

Figure 4. Implementation of poll() with an Assumption.

points effectively reuse VM safepoints. Threads depending on the
assumption (all guest-language threads in our case) will run in the
interpreter when they execute code dependent on the assumption.
When running in the interpreter, calls to isValid() are actually
performed and not omitted, leading to the invalidated assumption
behavior. In our case, threads will enter the guest safepoint.

We show in Figure 5 the core of pauseThreadsAndExecute()
with an assumption. barrier() is a barrier to synchronize all
threads in the guest safepoint. interruptOtherThreads() calls
Thread.interrupt() on each thread in the guest safepoint ex-
cept the current thread.

The code is simplified in that the synchronized modifier is
not enough to invoke the pauseThreadsAndExecute() method
concurrently. Instead, exclusive access to trigger a guest safepoint
needs to be obtained in an interruptible way, calling poll() when
interrupted.

volatile Action safepointAction;
volatile Thread initiator;

synchronized
void pauseThreadsAndExecute(Action action) {

safepointAction = action;
initiator = Thread.currentThread();
assumption.invalidate();
interruptOtherThreads();
enterGuestSafepoint();

}

void enterGuestSafepoint() {
// wait for all to reach the safepoint
barrier();

// renew the assumption
if (Thread.currentThread() == initiator) {

assumption = Truffle.getRuntime()
.createAssumption();

}
// wait for all to see the new assumption
barrier();

try {
safepointAction.run();

} finally {
// wait for all to finish the action,
// unnecessary for deferred actions
barrier();

}
}

Figure 5. Implementation of pauseThreadsAndExecute() with
an Assumption.

Our implementation in JRuby+Truffle, in the class Safepoint-
Manager, is slightly more complex as we need to handle a few
additional arguments to pass the execution context correctly. Our
implementation, as the examples shown above, also does not accept

a list of threads for the pause methods but rather lets threads
register and unregister with guest safepoints. When we only want
to affect a subset of the threads, we use a condition in the action.
This is an intended restriction as currently the HotSpot JVM only
provides “global” VM safepoints affecting all threads and therefore
we need to pause all threads anyway.

4.3 Existing implementation of VM Safepoints

In this section we describe how VM safepoints are implemented
in our host VM, OpenJDK. A necessary property for VM safepoints
is that they can be reached by all threads in a small amount of time
(the latency). Once a VM safepoint is reached, the initiator thread
is guaranteed to have exclusive access to all heap memory and VM
data structures. In OpenJDK [13], VM safepoints are implemented
using different techniques based on the kind of code each thread is
running — Java bytecode in the interpreter, just-in-time compiled
code or native library code.

OpenJDK has two bytecode interpreters, the simple C inter-
preter and the standard template interpreter. The former one is only
used on architectures where the template interpreter is not sup-
ported. The C interpreter checks for safepoint requests by reading
a volatile variable at method entries, return instructions and loop
back edges. These locations are chosen for safepoint checks as that
is where the code might go back to execute the same instructions
again and therefore where it spends most of the time. This is in fact
similar to our flag check approach in Section 4.1 but at the VM
level.

When a safepoint is requested in the template interpreter, the
templated code of the affected threads is patched to contain an ad-
ditional indirection checking for safepoints before executing nor-
mal behavior. This is achieved by replacing the normal dispatch
table — the mapping between bytecodes and instructions — with
a dispatch table calling back to the VM for checking safepoints
and then resuming execution in the normal dispatch table. Once
the safepoint is reached, the code is patched again to use the nor-
mal dispatch table to remove the overhead of this indirection. In
the end, the volatile variable is read before entering the safepoint to
verify if there was a request as it is not atomic to restore the normal
dispatch table (a memory copy of a large region).

In the machine code generated by one of the just-in-time com-
pilers (client, server and also Graal for the GraalVM), checking
for safepoint requests is achieved by performing a read on a spe-
cial safepoint polling memory page. It is not the value of that read
which is important but its side effects that are significant. To cause
the thread to enter a safepoint, the permissions on the page are
changed so to disallow access to that page. This provokes an ac-
cess violation on the next read, which gets reported as a SEGV
signal (Linux/BSD) or an Exception (Windows). The correspond-
ing handler then enters the safepoint if the faulty read location was
the polling memory page.

To describe the specific instruction used for a safepoint, we take
the concrete example of the common AMD64 architecture. Instruc-
tions for other architectures are similar. The chosen instruction is
test, which reads an address in memory, performs a bitwise con-
junction and then sets flags. As this is not a branch instruction, no
prediction is needed and the instruction does not modify any gen-
eral purpose registers, meaning it can be pipelined efficiently by
the processor. The locations to add VM safepoints is decided by the
compiler and is entirely independent from the number and location
of calls to poll() using our API. VM safepoints are normally in-
serted once in each generated machine code function (which could
include multiple guest-language methods, or less than a guest-
language method such as just a loop body), and once inside each
loop. However, optimizations can remove some of these. For ex-

ample, in a loop of a known number of iterations safepoints may be
removed because a finite number of instructions can execute there
before the loop is exited. Finally, when a thread is performing a
blocking operation or similarly running native code (e.g., via JNI),
it is considered as already in the safepoint as it may not modify the
VM internals or the Java heap. On exit of such a blocking oper-
ation, the thread must wait until the safepoint action is complete.
This is problematic for guest-language safepoints and we discuss it
in the next section.

4.4 Running code in any thread
The existing VM safepoints alone are not expressive enough for our
purpose because they do not allow paused threads to execute user-
defined code before returning to normal execution. Having regular
calls to poll() solves that issue.

While reusing VM safepoints provide an efficient implementa-
tion, they also do not pause all threads. Instead they consider some
blocked threads to have reached the VM safepoint because they can
not manipulate the VM internals or the Java heap. This is insuffi-
cient for guest-language safepoints as we want to run arbitrary code
in any of the threads participating in the guest-language safepoint.
We discuss in this section how to circumvent this problem.

We identify three major cases in which threads might be
blocked. The first is blocking calls, such as sleeping for some time,
trying to acquire a lock, waiting on a condition or waiting for
another thread or process. Most of these blocking calls already pro-
vide a way to be interrupted, for instance via Thread.interrupt
throwing an exception in the blocked thread. These calls are idem-
potent such that restarting them later behaves as if they were not
interrupted. We can therefore interrupt blocked guest-language
threads when initiating a guest safepoint. As we do not know which
threads are blocked in such a case, we call Thread.interrupt on
all guest-language threads. When the blocking call is interrupted,
we poll and then restart the operation.

Another case is blocking IO. Many of these operations are
not idempotent, so we need to be careful when restarting them.
There are a few alternatives to avoid blocking the guest-language
thread. Some IO calls can already be interrupted like blocked calls
above. If they are idempotent, the solution described above just
works. One solution is to simulate blocking IO with asynchronous
IO. Asynchronous IO typically allows interruption and may be
restarted. In Java this can be achieved via select-able channels.
Finally, as blocking IO operations typically do not depend on the
thread running them, we can spawn some host-language threads,
invisible to the guest language, to actually perform the blocking
IO. Guest-language threads send their requests and wait for the
completion synchronously. This waiting operation is much easier
to interrupt.

The third case is executing native code in which it might take
an arbitrary amount of time for it to finish, if ever. This becomes
a serious problem if native code is used for long operations. In
practice, many usages of native code might prove non problematic
to interrupt if they do not perform long operations before calling
back to the VM, which is typical for JNI and guest-language native
extensions as they will likely interact often with the guest-language
entities. However, this would impact latency.

In the context of Truffle, some of this “native code” (e.g., Ruby
C extensions running on top of TruffleC [5]) is actually also exe-
cuted by the same VM. In this case, that execution is not considered
to be native code by the VM and it is possible to add calls to poll()
in that program like in the main guest-language implementation. If
none of that works, running native calls in separate threads remains
a possibility.

5. Evaluation

To evaluate our implementation we used a total of 55 bench-
marks, both common synthetic benchmarks such as fannkuch and
mandelbrot, as well as a suite of benchmarks produced by taking
key methods from a pair of Ruby libraries for manipulating images,
chunky png and PSD.rb [21]. These benchmarks do represent an
extreme of computational intensity — not all Ruby programs are
CPU bound — but they are also real code being run in produc-
tion today. All experiments were run on a system with 2 Intel Xeon
E5345 processors with 4 cores each at 2.33 GHz and 64 GB of
RAM, running 64-bit Ubuntu Linux 14.04. Benchmarks are run un-
til they reach a steady state, determined by looking at the range of
values over a moving window, and then 10 sample iterations are
measured. Problem sizes were configured so that their fastest itera-
tion takes at least 10ms and timing calls do not dominate. An arith-
metic mean of the samples gives us the reported time. Reported
errors are the standard deviation. When summarizing across multi-
ple benchmarks we report a geometric mean of both the sample and
the error. Our experiments use version 0.6 of Graal and are made
available in a fork of the JRuby+Truffle repository [20].

5.1 Overhead on Peak Performance
We were interested in the overhead that JRuby+Truffle causes when
our safepoint API is available but not used. This scenario is relevant
because it is how we anticipate our safepoint mechanism to be used
in most cases — ready to be used but not a common operation.
Furthermore, we wanted to compare the overhead of our safepoint
API implementation with that of alternative implementations.

We first measured the performance of JRuby+Truffle including
references to the safepoint API (the api configuration). Then we
removed these references and measured again (the removed con-
figuration). As the API is simple and compact, we only had to
modify 74 lines of code. We finally measured the performance
of JRuby+Truffle when using alternative safepoint implementation
techniques. For example, we tried an implementation that explicitly
checks a volatile flag (the volatile configuration). We also tried an
implementation of our API that uses a JSR 292 SwitchPoint object
(the switchpoint configuration) [16].

Figure 6 shows our results. There is no statistically significant
difference in performance between removed, api and switchpoint.
This is because both api and switchpoint are reusing the existing
lower level VM safepoints, whose overhead is already part of the
VM. Thus, our API adds no penalty to peak performance, and so
we refer to it as zero-overhead.

There is, however, a statistically significant difference between
the performance of api and volatile. The geometric mean of the
overhead for the volatile configuration is 25% ± 1.5%. Of course,
this is the overhead on the whole benchmarks and if we could
compare the overhead of just the safepoint poll() operations it
would be much greater.

5.2 Parallel JavaScript
To confirm the validity of our approach we also performed an initial
evaluation of the usage of safepoints in the context of the River-
Trail parallel programming model for JavaScript, as discussed in
Section 3. Our implementation is based on the GraalJS JavaScript
engine [15], and is currently under active development.

Safepoints are used in our RiverTrail prototype implementation
to ensure that every read on potentially shared objects is consis-
tent with other reads during parallel execution. This is needed to
enforce the RiverTrail parallel model of execution, which permits
reads to shared objects and writes to scope-local ones. The model
also supports writes to shared objects, at the cost of parallel execu-
tion: when write operations are performed on objects that are po-

removed api switchpoint volatile
0

0.2

0.4

0.6

0.8

1

Sp
ee

du
p

re
la

tiv
e

to
re

m
ov

ed

Figure 6. Geometric mean of peak performance over all bench-
marks, normalized to the removed configuration. Higher is better.

tentially shared, parallel execution is aborted and the computation
is completed in a single-threaded mode. Our API is used by every
parallel thread to assert that parallel execution has not been aborted.
As long as this is true, the threads will never enter the safepoint (i.e.,
they will never suspend). In the unlikely case of execution bailout,
the aborting thread (i.e., the thread that is attempting to write to a
potentially shared object) will initiate the safepoint operation, and
will complete the parallel computation within the safepoint action,
sequentially.

As done in the previous section, we have implemented safe-
points by using a volatile check and a Truffle compiler assump-
tion. The performance comparison of the two implementations
is depicted in Figure 7, where we present the performance of
five JavaScript benchmarks from the Ostrich benchmark suite [9],
adapted to use the RiverTrail model. As expected, the overhead for
the volatile flag check is considerably high. Since the volatile check
is performed on read operations on potentially shared objects (i.e.,
on objects in the scope of multiple functions running in parallel),
benchmarks that perform only thread-local computations are not
affected by the volatile check. This is the case for the Primes and
the Mandelbrot benchmarks in the figure. Conversely, benchmarks
that rely on read-only shared state (such as CRC, FFT and NBody)
benefit from our API.

FFT Primes CRC Mandelbrot NBody
0

0.2

0.4

0.6

0.8

1

Sp
ee

du
p

re
la

tiv
e

to
re

m
ov

ed

Figure 7. Geometric mean of peak performance for RiverTrail in
JavaScript. The removed configuration () is compared against our
safepoint API () and volatile (). Higher is better.

5.3 Detailed Analysis
To further explain our results, we examined the machine code pro-
duced by the different configurations. We wrote a simple method
that was run in an infinite loop to conveniently trigger the dynamic
compiler. Our example code, written in Ruby and executed by
JRuby+Truffle, is shown in Figure 8. It is intentionally kept small
to improve the readability of the machine code and just contains

a few arithmetic instructions in the loop body to better show the
effect of the different configurations. Every arithmetic operator in
Ruby (in this case, +, ⇥ and <) is a method call. Therefore, any of
these operations is a call site and conceptually does the check for
guest-language safepoints. The body of the loop simply adds 7 to
the counter i at each iteration until i becomes greater or equal to n.
The method is called with different arguments to prevent argument
value profiling, which would eliminate the whole loop entirely in
compiled code as it has no side-effects.

def test(i, n)
while i < n
i += 1 + 2 * 3

end
end

while true
test(100, 200)
test(200, 300)

end

Figure 8. Example code for detailed analysis of the generated
machine code.

We present the machine code with symbolic names for absolute
addresses and rename the specific registers to the uppercase name
of the variable they contain. We use the Intel syntax, in which the
destination is the first operand.

The machine code produced by the removed, api and switch-
point configurations is identical if we abstract from absolute ad-
dresses and specific registers, and is shown in Figure 9. This sup-
ports our measurements in that our API really has zero overhead,
rather than just a low or difficult-to-measure overhead.

We can observe that the produced code is very close to the
optimal code for such a loop. The operations in the body of the loop
are reduced to a single addition thanks to constant propagation.
There are only two redundant move instructions, which copy the
variable i between registers I and I 0. The value of i is copied
in I 0 to perform the addition because, if the add overflows, the
original value of i needs to be accessed by the code performing the
promotion to a larger integer type. In theory, the promotion code
could subtract the second operand from the overflowed i, but this
is a fairly complex optimization to implement. The second move
reunifies the registers.

The loop begins with a read on the safepoint polling page as
described in Section 4.3, which checks for VM safepoints2. In
the api and switchpoint configurations, this check is also used for
guest-language safepoints at no extra cost. After the mov, we add
7 to i and then check for overflow with jo, an instruction that
jumps to the given address if there was an overflow in the last
operation. We then have the second mov, followed by the loop
condition i < n. The order of the operands in the machine code
is reversed, so we must jump to the beginning of the loop if n is
greater than i.

We now look at the machine code produced by the volatile
configuration (Figure 10). The generated code is much larger. The
loop starts by testing the condition i < n, again with reversed
operands. The condition is negated, n i, as the test is to break
out of the loop. Otherwise we enter the loop body. The body begins
with 4 reads of the volatile flag from memory, and if it is found
to be 0, the code jumps to a deoptimization handler with je. Of
these 4 checks, the first is for the loop itself and the other 3 are for
the different calls to +, + and ⇥ in the loop body. We then have
the read on the safepoint polling page checking for VM safepoints.

2 Actually, Graal moves this check out of the loop as it notices this is a
bounded loop. We disabled that optimization for clarity.

loop:
test safepoint polling page, eax # VM safepoint
mov I’ , I
add I’ , 0x7
jo overflow
mov I , I’
cmp N , I # n > i ?
jg loop

Figure 9. Generated machine code for the api, removed and
switchpoint configurations.

The remaining code is identical to Figure 9, except for the last
two instructions. They perform a read on the volatile flag to check
for guest-language safepoints at the call site of <, in the loop
condition. If the flag is found to be valid, the control goes back
to the beginning of the loop.

The 5 extra reads produced by the volatile flag are clearly re-
dundant in the presence of the existing lower-level VM safepoints.
They increase the number of instructions for the loop from 7 to 17,
incurring a significant overhead as shown in Figure 6.

loop:
cmp N , I # n i ?
jle break out of loop
cmp VOLATILE FLAG , 0x0 # while loop safepoint
je deopt
cmp VOLATILE FLAG , 0x0 # i += 1
je deopt
cmp VOLATILE FLAG , 0x0 # 1 + 2
je deopt
cmp VOLATILE FLAG , 0x0 # 2 * 3
je deopt
test safepoint polling page, eax # VM safepoint
mov I’ , I
add I’ , 0x7
jo overflow
mov I , I’
cmp VOLATILE FLAG , 0x0 # i < n
jne loop

Figure 10. Generated machine code for the volatile configuration.

5.4 Overhead for Compilation Time
We also considered the time taken for dynamic compilation for
benchmarks in different configurations by measuring the time taken
to compile the main method from the mandelbrot benchmark. This
is a relatively large method with a high number of method calls
which need to be inlined and several nested loops, all of which add
guest safepoints checks. We ran the benchmark 20 times for each
configuration.

Figure 11 shows our results, with the columns showing mean
compilation and the error bars showing one standard deviation.
We found no significant difference in compilation time between
removed, api and switchpoint. Compilation time for volatile flag
appeared to be only slightly higher. All of the techniques explored
require extra work in the compiler due to extra poll() calls, but
this appears to be insignificant compared to the rest of the work
being done by the compiler. The volatile flag is different to the other
implementations in that the code is not removed in early phases and
adds extra work to later phases of the compiler.

removed api switchpoint volatile
0

0.2

0.4

0.6

0.8

1

1.2

C
om

pi
la

tio
n

tim
e

(s
)

Figure 11. Mean compilation time for the mandelbrot method
across different configurations. Lower is better.

1 2 4 8 16 32 64 128 256 5121024
0

0.2

0.4

0.6

0.8

Number of threads

Sa
fe

po
in

tl
at

en
cy

(s
)

1 2 4 8 16 32 64
0

20

40

60

80

Number of threads

Sa
fe

po
in

tl
at

en
cy

(m
s)

Figure 12. Safepoint latency for the mandelbrot for our implemen-
tation. Lower is better.

5.5 Latency
Finally, we considered the time it takes for all threads to reach
a guest-language safepoint after one thread requested it — the
latency. Comparing the different configurations is not relevant here,
as the costs can be primarily attributed to the VM safepoint latency
and the necessary deoptimizations to run the omitted Java code,
replaced in the compiled code by a VM safepoint check.

We ran the mandelbrot benchmark with a variable number of
threads. After steady state was reached, a separate thread requested
all others to enter a guest safepoint.

Figure 12 shows our results, with the columns showing mean
latency and the error bars showing one standard deviation. Latency
was reasonable for most applications, responding to requests for
a guest safepoint within about 1/100th of a second when running
8 threads. Variance was surprisingly high, which would make it
hard to provide performance guarantees. Latency increases with

the number of threads running concurrently, however the trend is
sublinear. Deoptimization for multiple threads is a parallel task, so
although multiple threads add extra work, they also add extra po-
tential parallelism. For 1024 threads, a number well beyond typical
for normal modern Ruby applications, latency was half a second. It
should also be noted that due to deoptimization, the use of a guest
safepoint brings peak performance down for some time before code
can be reoptimized. Very frequent use of guest safepoints could
cause an application to run entirely in the interpreter.

6. Related Work
6.1 Safepoints
Host VM safepoints are a common technique found in many VMs.
The major JVMs implement safepoints using the optimized tech-
niques we described in Section 4. Microsoft’s CLR uses a volatile
flag. Simpler VMs such as the reference implementation of Ruby
and the Rubinius implementation also use the flag implementa-
tion technique. Rubinius has multiple flags for separate applica-
tions such as GC, passing exceptions to threads, and debugging,
which means that each safepoint can consist of multiple loads, and
as the value of the flag is being explicitly checked it also includes a
branch instruction.

In the introduction we said that threading libraries do not gen-
erally provide a mechanism to interrupt a running thread which
could be used instead of each thread polling. In fact, in some sys-
tems such FreeBSD and HP-UNIX the pthread suspend and
pthread continue calls are available, which will pause and
restart a running thread. The Boehm-Demers-Weiser conservative
GC [1] uses these calls when available and sends signals to threads
when they are not. However this only addresses one application —
pausing threads so they do not modify the heap while collection
phases run. They do not allow an action to be passed to another
thread.

6.2 Deoptimization
A key part of our technique is that we use deoptimization to jump
from code that does not actively poll for safepoints to code that
does. Deoptimization is closely associated with development of
the Smalltalk language, where it was described as a technique for
implementing a debugger [7]. For this application safepoints were
also required, which were originally called “interrupt points” [3],
as those were the locations where the debugger could interrupt the
running program. The emphasis was on making the program at that
point able to be inspected by having debug information available.

Our system re-uses the VM’s deoptimization mechanism, which
is implemented at the level of directly manipulating native call
stacks. Others have attempted to re-implement deoptimization at
the level of the guest VM [8] using high level language features
such as exceptions and a threaded interpreter that allows a program
to be resumed by running the correct method for a particular in-
struction. However, without a similar re-implementation of safe-
points this would not be sufficient for our applications.

6.3 SwitchPoint
An instance of class SwitchPoint [14] is “an object which can
publish state transitions to other threads”. SwitchPoint is part of
the java.lang.invoke package, which contains various dynamic
language support classes, that are part of JSR 292 [16]. The imple-
mentation of SwitchPoint uses VM safepoints and adds no over-
head to peak performance. In that regard, it is very similar to Truf-
fle’s Assumption class and can be used as an alternative imple-
mentation to access the VM safepoint functionality. Contrary to our
API, it provides no way to run arbitrary code in other threads. As
far as we know, current use cases of SwitchPoint are limited to rare

invalidation, which is a small subset of the applications that we pre-
sented in our paper and uses safepoints as a cheap check but not as
an opportunity to run code in other threads. One existing use case of
rare invalidation is an “almost constant value” [4]. JRuby [12], the
implementation of Ruby on top of the JVM and an heavy user JSR
292, uses them for constant invalidation and for modifications of
methods in existing classes. Invalidation of a SwitchPoint always
triggers deoptimization as it must run non-compiled Java code in
the interpreter.

6.4 Biased locking
The biased locking technique described in [17] uses VM safepoints
to revoke the bias from an individual lock. This happens when a
thread tries to access a lock biased towards another thread. The
biased lock is then replaced with some other locking implementa-
tion which can handle multiple owners over time more efficiently,
i.e., without needing safepoints. Safepoints are also used in bulk
re-biasing and revocation to ensure a consistent view of the object
headers and their lock states. These bulk operations operate on all
objects of a given type to amortize the cost of individual revocation.
Bulk re-biasing supports re-initializing the lock state to unbiased,
allowing other threads to take the bias of one of these objects.

Biased locking is not always easy to apply to guest languages
as these might provide unstructured locking (lock/unlock instead
of only synchronized blocks) or they might require the lock()
operation to be interruptible (we need it for guest-language safe-
points). However the techniques presented in the paper might be
applicable to concurrency primitives in the guest language and their
expression would be rather elegant our API.

6.5 Biased Reader-Writer locks
LarkTM [24], a Software Transactional Memory implementation
uses VM safepoints for coordinating the resolution of lock con-
flicts with their biased reader-writer locks [2]. They partition the
threads into two categories: threads executing a blocking operation
(waiting, I/O, running native code, etc) and all others threads. An
explicit protocol is used to handle the threads that are not executing
a blocking operation, in which case the responding thread resolves
the conflict. In the implicit protocol, used for the blocked threads,
the requesting thread does the operation on behalf of the blocked
thread, which must wait for that operation to complete before re-
turning from its blocking operation. This approach only works if
the code does not depend on the thread in which it is run (call stack,
thread-local state, etc) and needs careful memory barriers to ensure
visibility of the changes. Our API avoids these limitations by pro-
viding the ability to run code in any participating thread. We also
discussed how to avoid blocked threads such that an implicit proto-
col is not needed.

7. Future Work

Our current implementation of the safepoint API provides the
functionality that we need to implement existing Ruby function-
ality and other useful new Ruby features. Our API imposes zero
overhead on peak performance and insignificant compilation over-
head, which means that it causes no overhead for programs which
do not actually use a safepoint. Latency is reasonable, but could
probably be lowered. Our current implementation uses deoptimiza-
tion of all application threads which is both time consuming and
also damages peak performance after the safepoint is finished un-
til the compiler recompiles the methods. Future work will focus on
mitigating these costs so that safepoints can be used for high perfor-
mance operations such as intra-thread message passing. This can be
achieved by moving the API down into the Truffle framework and

by making Graal aware of how to optimize these safepoints. When
this is done we aim to measure the costs for various use cases of the
safepoint API (e.g., the time needed to attach or detach a debugger),
rather than just the costs of the API primitives themselves.

Currently, the VM safepoints that we use are global safepoints
pausing all host-language threads in the system. We intend to ex-
plore optimizing the case of pausing just a single thread, which
is common in many applications of guest-language safepoints and
could significantly reduce the latency. It would also improve global
throughput as other threads would not be interrupted.

When our safepoint API has been moved down into the Truf-
fle framework, another interesting area of research will be cross-
language safepoints. Threads running code written in multiple lan-
guages will then be able to cause each other to enter safepoints by
using the common Truffle safepoint API. We are planning to use
this technique to allow safepoints to work within Ruby C exten-
sions by applying the same API both within the Ruby interpreter
and our C interpreter.

Safepoints are primarily useful in multithreaded virtual ma-
chines, but our implementation of Ruby currently has a global in-
terpreter lock so that although there is concurrency between threads
there is no parallelism. This does not invalidate our work as safe-
points have been useful since long before multiprocessors were
available. They are still useful for concurrent threads, but it means
we are not exploiting the full potential of safepoints. We are cur-
rently working to remove this limitation.

Specifically in the implementation of JRuby+Truffle we see
safepoints as potentially the key primitive to provide an alternative
to locking VM data structures. Structures that are frequently read
but infrequently modified can be written to in a safepoint, meaning
that no lock is required for readers.

Finally, our system can be generalized as a high performance
mechanism to send code from one thread to another. When looked
at in this way, we see further applications in areas such as paral-
lelism — where code could be passed between cores that own data,
rather than data being passed between cores that own code.

8. Conclusion
We have given the motivation for having a way to use safepoints

as a guest-language implementation on a virtual machine, by show-
ing how they can be used to implement several existing features in
the Ruby language, and how they allow useful new features to im-
plemented. We described a design for this API that is high level,
and showed how we can implement it by re-using the underlying
VM safepoint mechanism. We evaluated our implementation and
found that it meets our requirements for low overhead on applica-
tion threads — in fact it has zero overhead, which can be proved by
inspection of the machine code. We found the overhead on compila-
tion time to be statistically insignificant, and the latency to be very
low for a realistic number of threads. The design and implemen-
tation therefore meet the requirements that we had. Future work
will look to move this API down into the language implementation
framework and to continue to improve latency through improve-
ments at the compiler level.

Acknowledgments
We gratefully acknowledge the contributions of the JRuby+Truffle
team including Kevin Menard, the wider Virtual Machine Research
Group at Oracle Labs, the Institute for System Software at JKU
Linz and everyone else who has contributed to Graal and Truffle.

Oracle, Java, and HotSpot are trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective own-
ers.

References
[1] H.-J. Boehm and M. Weiser. Garbage Collection in an Uncooperative

Environment. Softw., Pract. Exper., 18(9):807–820, 1988.
[2] M. D. Bond, M. Kulkarni, M. Cao, M. Zhang, M. Fathi Salmi,

S. Biswas, A. Sengupta, and J. Huang. Octet: Capturing and control-
ling cross-thread dependences efficiently. In ACM SIGPLAN Notices,
volume 48, pages 693–712, 2013.

[3] L. P. Deutsch and A. M. Schiffman. Efficient Implementation of the
Smalltalk-80 System, 1984.

[4] R. Forax. JSR 292 Goodness: Almost static final field., 2011.
https://weblogs.java.net/blog/forax/archive/2011/12/

17/jsr-292-goodness-almost-static-final-field.
[5] M. Grimmer, C. Seaton, T. Würthinger, and H. Mössenböck. Dynami-

cally composing languages in a modular way: supporting C extensions
for dynamic languages. In Proc. of Modularity, pages 1–13, 2015.

[6] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram. River Trail:
A path to parallelism in JavaScript. In ACM SIGPLAN Notices,
volume 48, pages 729–744, 2013.

[7] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code
with dynamic deoptimization. In Proc. of PLDI, pages 32–43, 1992.

[8] M. N. Kedlaya, B. Robatmili, C. Caşcaval, and B. Hardekopf. De-
optimization for dynamic language JITs on typed, stack-based virtual
machines. In Proc. of VEE, pages 103–114, 2014.

[9] F. Khan, V. Foley-Bourgon, S. Kathrotia, E. Lavoie, and L. Hendren.
Using JavaScript and WebCL for Numerical Computations: A Com-
parative Study of Native and Web Technologies. In Proc. of DLS,
pages 91–102, 2014.

[10] L. Lu, W. Ji, and M. L. Scott. Dynamic enforcement of determinism
in a parallel scripting language. In Proc. of PLDI, page 53, 2014.

[11] N. D. Matsakis. Parallel Closures: A New Twist on an Old Idea. In
Proc. of USENIX HotPar, 2012.

[12] C. Nutter, T. Enebo, O. Bini, N. Sieger, et al. JRuby, 2015.
http://jruby.org/.

[13] Oracle. OpenJDK, 2015. http://openjdk.java.net/.
[14] Oracle. Class SwitchPoint, 2015. http://docs.oracle.com/

javase/8/docs/api/java/lang/invoke/SwitchPoint.html.
[15] Oracle Labs. GraalJS - High-Performance JavaScript Engine,

2015. http://www.oracle.com/technetwork/oracle-labs/

program-languages.
[16] J. Rose et al. JSR 292: Supporting Dynamically Typed Languages on

the Java Platform, 2011. https://jcp.org/en/jsr/detail?id=

292.
[17] K. Russell and D. Detlefs. Eliminating synchronization-related atomic

operations with biased locking and bulk rebiasing. ACM SIGPLAN
Notices, 41(10):263–272, 2006.

[18] C. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging at Full
Speed. In Proc. of Dynamic Languages and Applications (DYLA),
2014.

[19] C. Seaton, B. Daloze, K. Menard, T. Würthinger, et al. JRuby+Truffle
- a High-Performance Truffle Backend for JRuby, 2015.
https://github.com/jruby/jruby/wiki/Truffle.

[20] C. Seaton, B. Daloze, K. Menard, T. Würthinger, et al. A
JRuby+Truffle fork with the branches used for evaluation, 2015.
https://github.com/eregon/jruby/tree/safepoint.

[21] C. Seaton et al. Bench9000, 2014.
https://github.com/jruby/bench9000.

[22] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM to rule
them all. In Proc. of Onward!, pages 187–204, 2013.

[23] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and
C. Wimmer. Self-optimizing AST interpreters. In Proc. of DLS,
page 73, 2013.

[24] M. Zhang, J. Huang, M. Cao, and M. D. Bond. Low-overhead Soft-
ware Transactional Memory with Progress Guarantees and Strong Se-
mantics. In Proc. of PPoPP, pages 97–108, 2015.

https://weblogs.java.net/blog/forax/archive/2011/12/17/jsr-292-goodness-almost-static-final-field
https://weblogs.java.net/blog/forax/archive/2011/12/17/jsr-292-goodness-almost-static-final-field
http://jruby.org/
http://openjdk.java.net/
http://docs.oracle.com/javase/8/docs/api/java/lang/invoke/SwitchPoint.html
http://docs.oracle.com/javase/8/docs/api/java/lang/invoke/SwitchPoint.html
http://www.oracle.com/technetwork/oracle-labs/program-languages
http://www.oracle.com/technetwork/oracle-labs/program-languages
https://jcp.org/en/jsr/detail?id=292
https://jcp.org/en/jsr/detail?id=292
https://github.com/jruby/jruby/wiki/Truffle
https://github.com/eregon/jruby/tree/safepoint
https://github.com/jruby/bench9000

	Introduction
	Safepoints and Terminology
	Guest-Language Safepoints
	Implementation Context
	Contributions

	An API for Guest-Language Safepoints
	Applications
	Intra-Thread Communication
	Guest-Language Signal Handlers
	Enumerating Live Objects
	Examining Call Stacks
	Debugging
	Deterministic parallel execution

	Implementation
	A flag check
	Truffle and Graal
	Existing implementation of VM Safepoints
	Running code in any thread

	Evaluation
	Overhead on Peak Performance
	Parallel JavaScript
	Detailed Analysis
	Overhead for Compilation Time
	Latency

	Related Work
	Safepoints
	Deoptimization
	SwitchPoint
	Biased locking
	Biased Reader-Writer locks

	Future Work
	Conclusion

